Development of an HTS assay for Na+, K+-ATPase using nonradioactive rubidium ion uptake.
نویسندگان
چکیده
A high-throughput screening (HTS) assay was developed for the Na(+),K(+)-ATPase channel in order to study rubidium uptake as a measure of the functional activity and modulation of this exchanger. The assay uses elemental rubidium as a tracer for K(+) ions. Three cell lines were used to study the exchanger, and the assay was performed in a 96-well microtiter plate format. Rb(+) uptake was carried by the CHO-K1 cells at 37 degrees C; the maximum ion influx was at 80 min of incubation of the cell line in the medium containing 5.4 mM RbCl. The cells were incubated in Rb(+) uptake buffer (5.4 mM) and with the pump blocker ouabain for 1, 2, and 3 h, respectively. A complete block of the Rb(+) uptake was observed with a 5 mM concentration of ouabain for all the three time intervals. The ouabain 50% inhibitory concentration (IC(50)) value for CHO-K1 cell line ATPase was observed to be 298 microM after 3 h of incubation. In addition, IC(50) values of 94 and 89 microM were observed at 30 min of incubation, indicating that the protocol shows reproducible results. A Z' factor higher than 0.7 was observed in the assays. These studies extend the profile of Na(+),K(+)-ATPases and demonstrate the feasibility of this HTS assay system to screen for compounds that pharmacologically modulate the function of Na(+),K(+)-ATPase.
منابع مشابه
Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin.
Two major issues which hamper the use of the anticancer drug cisplatin are the development of cancer cell resistance and its nephrotoxicity. One possible mechanism by which resistance is reported to develop is a reduction in drug uptake across the cell membrane. While the passive uptake of cisplatin has long been cited as an important contribution, far greater attention has been given to active...
متن کاملAbnormal sodium transport in synaptosomes from brain of uremic rats.
The causes of central nervous system (CNS) dysfunction in uremia are not well known and are not completely reversed by dialysis. This problem was investigated in synaptosomes, which are membrane vesicles from synaptic junctions in the brain. We measured Na uptake under conditions of control, veratridine stimulation, and tetrodotoxin inhibition, in synaptosomes from normal and acutely uremic (bl...
متن کاملRegulation of the Na+/K(+)-ATPase pump in vitro after long-term exposure to cocaine: role of serotonin.
Long-term exposure to cocaine can cause persistent behavioral changes and alterations in neuronal function. One cocaine-regulated mRNA in the rat brain is the beta-1 subunit of the Na+/K(+)-ATPase pump. We examined both Na+/K(+)-ATPase function and expression after cocaine treatment of pheochromocytoma cells. One-hour exposure to cocaine did not alter Na+/K(+)-ATPase activity, as measured by th...
متن کاملC-Peptide Increases Na,K-ATPase Expression via PKC- and MAP Kinase-Dependent Activation of Transcription Factor ZEB in Human Renal Tubular Cells
BACKGROUND Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC) in control and hyperglycemic conditions. MET...
متن کاملGlutamate transporter coupling to Na,K-ATPase.
Deactivation of glutamatergic signaling in the brain is mediated by glutamate uptake into glia and neurons by glutamate transporters. Glutamate transporters are sodium-dependent proteins that putatively rely indirectly on Na,K-ATPases to generate ion gradients that drive transmitter uptake. Based on anatomical colocalization, mutual sodium dependency, and the inhibitory effects of the Na,K-ATPa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Assay and drug development technologies
دوره 2 5 شماره
صفحات -
تاریخ انتشار 2004